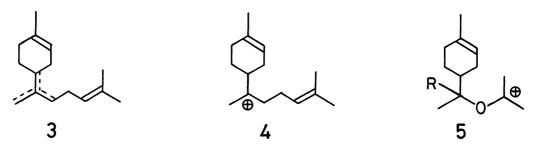
AN ELECTROCHEMICAL METHOD SPECIFICALLY DIRECTED TO THE PREPARATION OF DL-BISABOLOL FROM DL-NEROLIDOL

Kenji UNEYAMA, Yosinori MASATSUGU, Takesi UEDA, and Sigeru TORII*

Department of Industrial Chemistry, School of Engineering,

Okayama University, Okayama 700

A product-selective electrosynthesis of dl-bisabolol from dl-nerolidol was accomplished by a constant current electrolysis in commercial acetone containing a small amount of ${\rm LiClO}_4$


In spite of many efforts to realize an effective transformation of dl-nerolidol $\underline{2}$ into d1-bisabolol $\underline{1}$, an important fragrant constituent, no successful proce-Most of the acid-catalyzed dure for the preparation of $\underline{1}$ from $\underline{2}$ has appeared. cyclization so far studied by the use of HCO_2H in pentane, AlCl₃ in ether, 2-fluorobenzothiazolium salt in CH_2Cl_2 , KHSO₄, 3) and BF₃ etherate in CH_2Cl_2 resulted in the predominant formation of bisabolenes 3 and cedrenes rather than bisabolol 1. The best result so far known in literatures was achieved by the action of 100% HCO_2H , where $\underline{1}$ was obtained in 32% yield after 100% conversion and alkaline hydrolysis along with polyenes (19%) and diols (25%). Apparently these results suggest that deprotonation from bisabolyl cation 4 rather than internal return of hydroxy group to $\underline{4}$ would proceed preferentially and/or bisabolol $\underline{1}$ would be unstable in the reaction conditions employed. Therefore, an adequate solvent-acid-catalyst system should be chosen so as to realize a selective transformation of $\underline{2}$ into $\underline{1}$. Here, we describe an electrochemical procedure specifically directed to the preferential preparation of $\underline{1}$ from $\underline{2}$ which is characterized by generation of an electrogenerated acid in situ in a neutral solvent-electrolyte system at room temperature.

A typical electrolysis is as follows; A mixture of $\underline{2}$ (222 mg, 1 mmol), LiClO₄ (10 mg, 0.1 mmol) in commercial acetone⁶⁾ (8 ml) was electrolyzed under a constant current (10 mA for 1 h, 0.36 Faradays/mol) using platinum foil electrodes (2 x 1.5 cm²) in an undivided cell and the mixture was stirred at ca. 25-30 °C for 2 h, affording $\underline{1}$ (52%) as a diastereomeric mixture (1:1) and $\underline{3}$ (25%) as a mixture of α -, β -, and γ -isomers. While, the reaction of $\underline{2}$ with perchloric acid in acetone at 30°C

gave $\frac{1}{2}$ (23%) and $\frac{3}{2}$ (54%), demonstrating the efficiency of the electrolysis method.

The effect of solvents is remarkable. Acetone is an excellent solvent for the selective preparation of $\frac{1}{2}$ presumably because it traps bisabolyl cation $\frac{4}{2}$ leading to $\frac{5}{2}$ [R; CH₂CH₂CH=C(CH₃)₂] which would be hydrolyzed to give $\frac{1}{2}$. On the other hand, the use of THF (60 °C) and ClCH₂CH₂Cl-THF (9:1 at 50 °C)⁸⁾ promoted dehydration exclusively leading to the formation of $\frac{3}{2}$ (72% and 66%), respectively. The use of MeOH and MeCN gave complex mixtures from which neither $\frac{1}{2}$ nor $\frac{3}{2}$ was detected after 1.5 Faradays/mol of electricity was passed. The yield of bisabolenes $\frac{3}{2}$ in the present electrolysis is satisfactory as compared with those obtained by BF₃ etherate in CH₂Cl₂(trace), HCO₂H in pentane (59%), 1)₂-fluorobenzothiazolium salt in CH₂Cl₂ (72%), and KHSO₄ by thermolysis (18%).

Metal perchlorates are essential to induce the transformation $(\underline{2} \to \underline{1})$. Sodium, lithium, and magnesium perchlorates provided $\underline{1}$ in satisfactory yields (49% for Na, 52% for Li, and 39% for Mg). However, other conventional electrolytes such as $\mathrm{Et_4NOTs}$, $\mathrm{Et_4NBr}$, and $\mathrm{Et_4NClO_4}$ were found to be useless. The increase of the reaction temperature enhanced the rate and affected the preferential formation of bisabolenes: $[\underline{1}(\$),\underline{3}(\$), ^{\circ}\mathrm{C}; 52\$, 25\$$ at 30 $^{\circ}\mathrm{C}; 32\$, 52\$$ at 40 $^{\circ}\mathrm{C}; 20\$, 63\$$ at 50 $^{\circ}\mathrm{C}$]. Electrolysis of an aprotic solution containing metal perchlorates generates a strong acid. 7,9) The electrogenerated acid-catalysis in commercial acetone is so effective for carbon-hydroxy bond breaking and reforming sequence as shown in the cyclization ($\underline{2} \to \underline{1}$) that it seems applicable for the biogenetic type cyclization of various polyisoprenols which is under active investigation.

References

- 1) N. H. Andersen and D. D. Syrdal, Tetrahedron Lett., 1972, 2455.
- 2) S. Kobayashi, M. Tsutsui, and T. Mukaiyama, Chem. Lett., 1977, 1169.
- 3) G. Brieger, T. J. Nestrick, and C. McKenna, J. Org. Chem., 34, 3789 (1969).
- 4) Y. Ohta and Y. Hirose, Chem. Lett., 1972, 263.
- 5) C. D. Gutsche, J. R. Maycock, and C. T. Chang, Tetrahedron, 24, 859 (1968).
- 6) The use of the distilled acetone resulted in lower yield of $\frac{1}{2}$ (35%).
- 7) To our knowledge this work is the first case which demonstrates acetone to be a useful solvent for the acid-catalyzed cyclization of terpenoids. Tertiary carbenium ion can be trapped with acetone in the acid-catalyzed acetonidation.

 K. Uneyama, A. Isimura, K. Fujii, and S. Torii, Tetrahedron Lett., 1983, 2857.
- 8) Because of the low solubility of LiClO₄ in ClCH₂CH₂Cl 10% of THF was mixed.
- 9) S. Torii and T. Inokuchi, Chem. Lett., 1983, 1349.
- 10) The authors are grateful to the Ministry of Education, Science, and Culture for a financial support by a Grant-in-Aid (No.57118002).

(Received January 9, 1984)